13,395 research outputs found

    Mathematical modelling and experimental validation of electrostatic sensors for rotational speed measurement

    Get PDF
    Recent research has demonstrated that electrostatic sensors can be applied to the measurement of rotational speed with excellent repeatability and accuracy under a range of conditions. However, the sensing mechanism and fundamental characteristics of the electrostatic sensors are still largely unknown and hence the design of the sensors is not optimised for rotational speed measurement. This paper presents the mathematical modelling of strip electrostatic sensors for rotational speed measurement and associated experimental studies for the validation of the modelling results. In the modelling, an ideal point charge on the surface of the rotating object is regarded as an impulse input to the sensing system. The fundamental characteristics of the sensor, including spatial sensitivity, spatial filtering length and signal bandwidth, are quantified from the developed model. The effects of the geometric dimensions of the electrode, the distance between the electrode and the rotor surface and the rotational speed being measured on the performance of the sensor are analyzed. A close agreement between the modelling results and experimental measurements has been observed under a range of conditions. Optimal design of the electrostatic sensor for a given rotor size is suggested and discussed in accordance with the modelling and experimental results

    Zitterbewegung by Quantum Field Theory Considerations

    Full text link
    The validity of the work by Lamata et al [Phys. Rev. Lett. 98, 253005 (2007)] can be further shown by quantum field theory considerations.Comment: 5 pages, no figure, to be published in Physical Review

    Empirical comparison of diffusion kurtosis imaging and diffusion basis spectrum imaging using the same acquisition in healthy young adults

    Get PDF
    As diffusion tensor imaging gains widespread use, many researchers have been motivated to go beyond the tensor model and fit more complex diffusion models, to gain a more complete description of white matter microstructure and associated pathology. Two such models are diffusion kurtosis imaging (DKI) and diffusion basis spectrum imaging (DBSI). It is not clear which DKI parameters are most closely related to DBSI parameters, so in the interest of enabling comparisons between DKI and DBSI studies, we conducted an empirical survey of the interrelation of these models in 12 healthy volunteers using the same diffusion acquisition. We found that mean kurtosis is positively associated with the DBSI fiber ratio and negatively associated with the hindered ratio. This was primarily driven by the radial component of kurtosis. The axial component of kurtosis was strongly and specifically correlated with the restricted ratio. The joint spatial distributions of DBSI and DKI parameters are tissue-dependent and stable across healthy individuals. Our contribution is a better understanding of the biological interpretability of the parameters generated by the two models in healthy individuals

    Quantum Dynamics of a Nanomagnet driven by Spin-Polarized Current

    Full text link
    A quantum theory of magnetization dynamics of a nanomagnet as a sequence of scatterings of each electron spin with the macrospin state of the magnetization results in each encounter a probability distribution of the magnetization recoil state associated with each outgoing state of the electron. The quantum trajectory of the magnetization contains the average motion tending in the large spin limit to the semi-classical results of spin transfer torque and the fluctuations giving rise to a quantum magnetization noise and an additional noise traceable to the current noise.Comment: 4 pages, 4 figure

    LAMOST 1: A Disrupted Satellite in the Constellation Draco

    Full text link
    Using LAMOST spectroscopic data, we find a strong signal of a comoving group of stars in the constellation of Draco. The group, observed near the apocenter of its orbit, is 2.6 kpc from the Sun with a metallicity of -0.64 dex. The system is observed as a streaming population of unknown provenance with mass of about 2.1E4 solar masses and an absolute V band magnitude of about -3.6. Its high metallicity, diffuse physical structure, and eccentric orbit may indicate that the progenitor satellite was a globular cluster rather than a dwarf galaxy or an open cluster.Comment: 6 pages, 4 Figures, 1 Table, Accepted to ApJ

    Neutrino oscillations in de Sitter space-time

    Full text link
    We try to understand flavor oscillations and to develop the formulae for describing neutrino oscillations in de Sitter space-time. First, the covariant Dirac equation is investigated under the conformally flat coordinates of de Sitter geometry. Then, we obtain the exact solutions of the Dirac equation and indicate the explicit form of the phase of wave function. Next, the concise formulae for calculating the neutrino oscillation probabilities in de Sitter space-time are given. Finally, The difference between our formulae and the standard result in Minkowski space-time is pointed out.Comment: 13 pages, no figure
    • …
    corecore